

The self-incompatibility system of Theobroma cacao L.: from genomics to diagnostic markers

Claire Lanaud^{1†}, Olivier Fouet^{1†}, Thierry Legavre^{1†}, Uilson Lopes^{2†}, Olivier Sounigo^{3,4} Marie Claire Eyango⁴, Benoit Mermaz¹, Marcos Ramos da Silva², Rey Gaston Loor Solorzano⁵, Xavier Argout¹, Gabor Gyapay⁶, Herman Ebai Ebaiarrey⁴, Kelly Colonges¹, Christine Sanier¹, Ronan Rivallan¹, Géraldine Mastin¹, Nicholas Cryer^{7,} Michel Boccara¹, Jean-Luc Verdeil¹, Ives Bruno Efombagn Mousseni⁴, Karina Peres Gramacho², Didier Clement^{1,2}

1)-CIRAD-AGAP (France); 2) CEPEC-(CEPLAC (Brazil);3) CIRAD-UR Bioagresseurs (France); 4) IRAD (Cameroun); 5) INIAP (Ecuador); 6) CEA (France); 7) Mondelez International (UK) Thanks to AGROPOLIS FONDATION and MONDELEZ International for their financial contribution

2017 International Symposium on cocoa research (ISCR), Lima, Peru, 13-17 novembre 2017

The several steps of cocoa self incompatibility studies

- Favorise genetic exchanges and recombination, increasing plant heterozygosity
- Important factor to increase yield (young trees)
- Important for clonal selection to ensure cocoa production,
- First Genetic studies in the fifties-sixties (Cope,1939-62; Knight & Rogers, 1955; Bouharmont, 1960; Glendinning, 1967; etc... -> multilocuslate acting self incompatibility system –dominance relationships between alleles – results in gamete non fusion and fruit drop
- Evidence of the non efficiency of incompatibility system for hybrid seed production in biclonal seed gardens (Lanaud et al.; 1987)
- Genetic mapping (with molecular markers) of one locus (CH4) (Crouzillat et al., 1996; Royaert et al., 2010; Yamada et al., 2010) and recent cytological studies by Ford and Wilkinson (2012)

OBJECTIVES: Use new technology tools to increase our knowledge of the incompatibility system and produce diagnostic markers

Exploring cocoa genome sequence

→ new field of researches openned by the availability of the genome sequences (Argout et al, 2011: Motamayor et al, 2013) to refine the genetic and molecular basis of SI, and to define diagnostic markers, close to the genes, for genetic breeding

Genetic/genomic studies were based on several large populations :

- a F2 mapping population (850 ind.) located in Brazil used for fine mapping
- a diverse population (710 ind.) from Brazil, Ecuador, Cameroun, Trinidad evaluated for self–incompatibility used for association mapping and SC/SI prediction analyses

Fine mapping of two self-incompatibility loci

F2 progeny (850 ind): • selfing self-incompatible TSH516 (ICS1 x SCA6), using mentor pollen. Fruits are maintained until maturity even in case of gametic non-fusions
•Genotype selection could be observed in the progeny with markers – 2 skewed regions
•TSH516 heterozygous at each locus with Amelonado (a)/SCA6(b) alleles: 3 genotypes are expected at each loci.

cirad

agap

70,3 K

				Number of individuals						Number of individuals					
	Markers	СН	Position	а	h	b	Total	Markers	СН	Position	а	h	b	Total	
	mSI 26	CH1	3377732	5	228	118	351	mSI_462	CH4	1414	222	425	2	649	
	mSI 88	CH1	3499444	5	224	111	340	mSI_466	CH4	4/3/	191	385	0	576	
		CH1	3525756	5	233	114	352	msi_474		20673	259	188	0	7/7	
	 mSI_32	CH1	3649333	4	236	120	361	mSI_34	CH4	28166	238	487	0	725	
	mTcCIR15	CH1	3711664	4	227	117	348	mSI_8	CH4	28166	142	270	0	412	
	mSI 73	CH1	3790637	4	291	138	429	mTcCir312	CH4	32259	277	516	0	793	
	mSI_101	CH1	3935902	3	243	119	365	mSI_35	CH4	33618	183	348	0	531	257 KD
	mSI_102	CH1	3966163	2	249	119	370	mSI_2	CH4	43494	191	335	0	526	
	mSI_140	CH1	3988656	2	217	125	344	mSI_542		63388	33	68	0	101	
	mSI_141	CH1	4010921	2	308	138	448	msi_303		136890	299	399	0	607	
	mSI_103	CH1	4024677	3	387	228	618	mSI 460	CH4	139590	198	406	0	604	
	mSL 366	CH1	4053385	0	508	253	761	mSI_308	CH4	139780	211	408	0	619	
b	mSL 367		4053585		366	235	582	mSI_309	CH4	141679	205	411	0	616	
	msl 260		4054418		410	210	640	mSI_310	CH4	142517	193	383	0	576	
	msi_369	CHI	4057532		419	221	640	mSI_315	CH4	233706	301	563	0	864	
	mSI_440	CH1	4066036	0	476	253	/29	mSI_402	CH4	246098	259	506	0	765	
	mSI_370	CH1	4070474	0	466	266	732	mSI_535	CH4	252815	110	232	0	342	
	mSI_372	CH1	4073585	0	297	170	467	mSI_411	CH4	258684	125	242	1	368	
	mSI_375	CH1	4091577	2	429	228	659	mS_413	CH4	270916	118	253	1	372	
	mSI 107	CH1	4130575	4	374	212	590	mSI_39	CH4	278179	277	421	1	699	
	mTcCIR356	CH1	4149062	6	232	118	354	mSI_42	CH4	343424	109	233	2	345	
	mSI 112	CH1	4233257	6	339	163	502	mSI_46	СН4	428250	55	230	2	521	
		CH1	4252975	6	284	172	456	mSI_294	CH4	1686245	109	248	- 16	373	

Identification of 2 regions involved in genotype selection, with a complete absence of recombinant plant. Incompatibility alleles closely linked to markers \rightarrow candidate genes

Genome Wide Association Studies (GWAS)

Impact on fruit drop:

🕖 cirad

agar

- GWAS conducted with 16480 SNP markers (GBS)
- on 570 cocoa trees from Brazil, Cameroun, Ecuador, Trinidad, evaluated for self incompatibility

Only one region located in CH4 was identified as involved in fruit drop, (evaluated by 0/1 or by the % fruit retention after selfing)

Only one significant marker, located in a **GEX (gamete expressed) gene**, included in the « non-recombinant » region of CH4 identified by fine mapping

Behavior of the CH1 locus

Is the CH1 functional when the cocoa tree is self-compatible, due to the presence of the *Sf* Amelonado allele, homozygous in the CH4 locus?

F1 : TSH516 (ICS1 x SCA6)

CH1: 223 (Amel) / 225 (Sca6) + CH4: Sf/Sf

After selfing

BR59 x BR59	mSI_460	CH4	161-161 x 161-161	109	161-161	109	
self-compatible	mSI_103	CH1	223-225 x 223-225	109	223-223	0	YF
					223-225	77	
					225-225	32	fu
BR36 x BR36	mSI_460	CH4	161-161 x 161-161	34	161-161	34	ca
self-compatible	mSI_103	CH1	223-225 x 223-225	34	223-223	0	
					223-225	20	CO
					225-225	14	

YES, it remains functional in case of selfcompatibility

Does it result in selective gamete non-fusion?

25 % of aborted ovules expected in case of selective gamete non fusion

11 % and 9% of aborted ovules respectively observed after self or cross pollination (CCN51)

% of aborted ovules easily observable 7 days after pollination

Genotypic selection happened before gamete non-fusion stage and after pollen germination

Search for candidate genes

Search for candidate genes, orthologous to genes known to interact with incompatibility system, in the non-recombinant regions of CH1 and CH4, and analyses of their expression during compatible and incompatible reactions

CH1: 3 candidate genes differentially expressed, and among them a transporter and a gene containing a site of protein-protein interactions

CH4: 7 candidate genes differentially expressed, and among them 2 GEX1 orthologs known to be involved in early embryo and gametophyte development. They interact also with HAPLESS genes essential for pollen tube guidance and fertilization

Tc01_g007290

🥑 cirad

agap

Search for diagnostic markers

Predictions established

• from a population of 710 cocoa trees from Brazil, Cameroun, Trinidad and Ecuador, covering a large diversity

• with highly multi-allelic SSR markers (until 24 alleles) located in the CH4 restricted region (based on a strong linkage between SSR alleles and incompatibility alleles

Identification of SSR alleles specific to self-compatible varieties: Amelonado (MSI_460-161) and Criollo (MSI_303-217)

Other *T. cacao* incompatibility allele combinations could result in SC or SI plants.

Multi-allelic status of SSR markers allowed a better discrimination of S-allele interactions and result of improved predictions.

markeri	markerz	genu	rype	3_0	<u> </u>	PTUD-SI	PIUD-3C
mSI_303		227/227		17	57	0,23	0,77
mSI_303	mSI_7	227/227	200/200	0	50	0,00	1,00
mSI_303	mSI_411	227/227	286/286	1	53	0,02	0,98
mSI_303		225/227		1	14	0,07	0,93
mSI_35		119/119		28	86	0,25	0,75
mSI_35	mSI_303	119/119	227/227	1	53	0,02	0,98
mSI_460		161/161		0	44	0,00	1,00
mSI_107	mSI_35	239/245	119/119	0	27	0,00	1,00
mSI_107	mSI_458	239/245	292/292	1	26	0,04	0,96
mSI_2		280/283		35	6	0,85	0,15
mSI_303		231/233		23	0	1,00	0,00
mSI_303		231/231		24	0	1,00	0,00
mSI_458		306/306		26	2	0,93	0,07
mSI_460		155/161		22	1	0,96	0,04
mSI_460		145/146		24	2	0,92	0,08
mSI_7		194/197		22	1	0,96	0,04

Some examples of predictions

Drah CL Drah CC

Conclusions

• Identification of 2 loci involved in the *T. cacao* incompatibility system by 2 different and independant mechanisms.

• only one (on CH4) seems to be linked to fruit drop, but the CH1 locus generates a genotypic selection, even in case of self-compatibility of the plant, and acts prior to the gamete fusion stage.

• A fine mapping of these 2 genomic regions, made thanks to the available *T. cacao* genome sequences, allowed us to identify several candidate genes potentially involved in the self incompatibility system, and some of them are differentially expressed between SC/SI reactions.

• Immunolocalization of CH1 candidate genes show that these genes are expressed in the ovule tissues surrounding the embryo sac and in the style during pollen tube progression.

• Diagnostic SSR markers, highly polymorphic, were designed in the CH4 region identified by fine mapping, linked by a strong linkage disequilibrium with incompatibility alleles.

• SSR alleles specific to self-compatible Amelonado and Criollo varieties were identified, as well as some genotypic combinations, allowing to screen efficiently self compatible plants in cocoa populations.

Thank you for your attention