

New Resistant Cocoa Selections from Costa Rica have Fine Aroma Potential

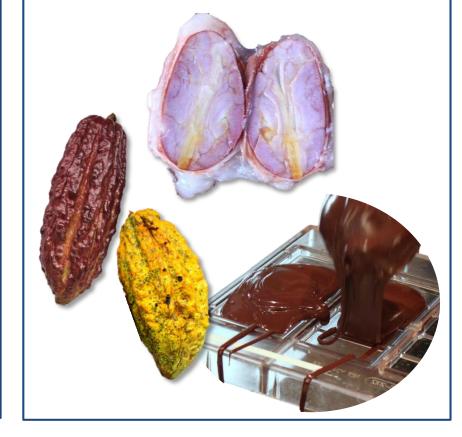
E. Hegmann¹, W. Phillips², R. Lieberei³

¹Rausch GmbH, Cocoa and Research, Berlin, Germany

²Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Turrialba, Costa Rica ³Crop Plant Museum Gorleben, CPMG, Germany (Former Prof. at the University of Hamburg)

Current situation in the cocoa sector

 Impact of diseases endanger cocoa plantations:



© MAYA MOUNTAIN CACAO (modified, 2015)

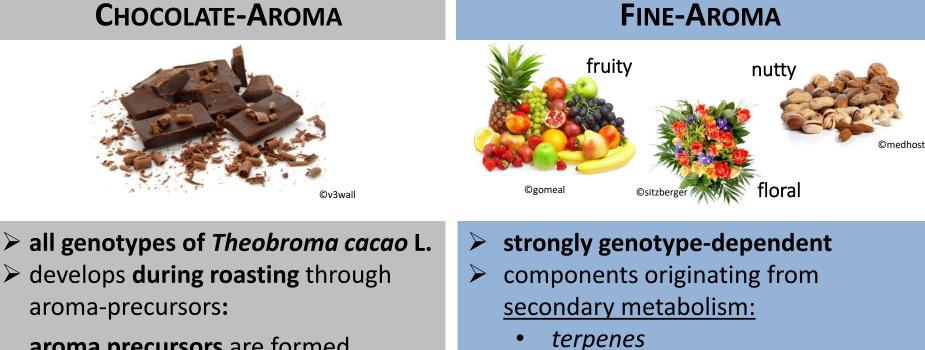
- © BREUER (modified, 2008)
- Field trainings in phytosanitary management
- Rejuvenation of old plantations

Growing demand for "Fine or Flavour"-cocoas

Selection and distribution of improved genetic material

Six improved cocoa clones selected at CATIE, Costa Rica: CATIE-R1 | CATIE-R4 | CATIE-R6 | PMCT-58 | CC-137 | ICS-95 (T1)

→ high yield potential and tolerant to "frosty pod" and "black pod"


(PHILLIPS-MORA et al. 2013, PHILLIPS-MORA et al. 2007)

Clone	Avera	age for all 11 y	/ears	Average for the last 5 years			
	Yield (kg/ha/yr)	% moniliasis	% black pod	Yield (kg/ha/yr)	% monitiasis	% black pod	
CATIE-R6	1485	5	0	2363	4	0	
CATIE-R4	1336	9	1	2070	12	1	
CC-137	990	32	1	1321	43	0	
CATIE-R1	1066	12	7	1674	15	6	
PMCT-58	789	26	4	1036	35	2	
ICS-95 T1	636	26	6	926	32	4	
			(PHILLIPS-MORA et al. 2013, modified)				
\longrightarrow	Arom	(Hegmann 2015)					

Aroma quality

- aroma precursors are formed during <u>fermentation</u> and <u>drying</u>:
 - free amino acids (FAA)
 - oligopeptides
 - reducing sugars

post harvest-management

alcohols

derivatives

 (aldehydes, methylketones, esters)

pulp, yeast activity, cotyledones

(Schwan and Wheals, 2014; Eskes et al., 2009, Kadow et al. 2013)

⁽Pettipher, 1986; Afoakwa et al., 2008)

Research design

Α.

Monoclonal Microfermentations in Costa Rica

1. Impact of genotype on course of fermentation

temperature development, changes in pH and pulp sugars (°Bx), CUT-Test

2. Biochemical characteristics of the six CATIE-selections

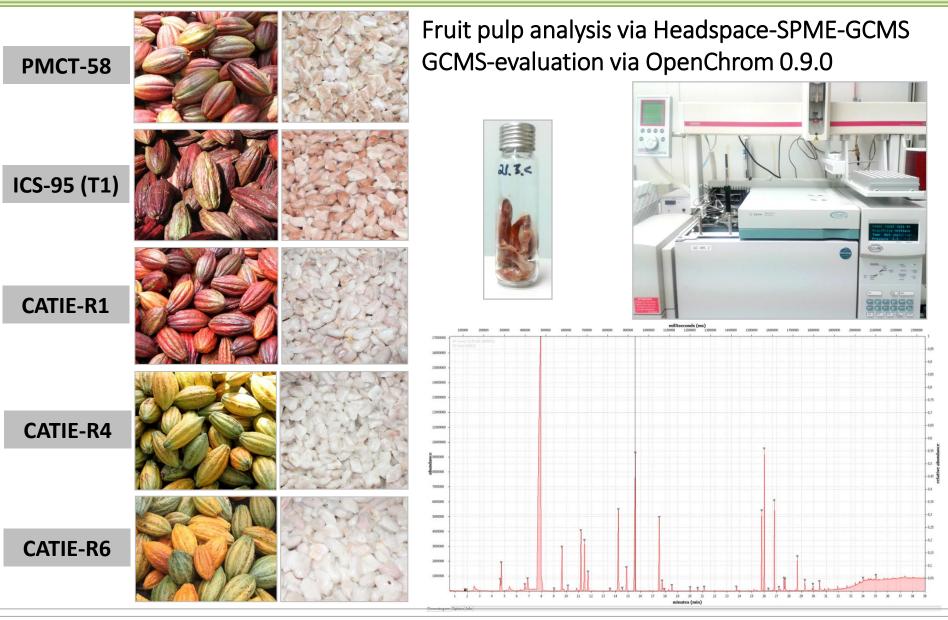
phenolic compounds, organic acids, free amino acids, reducing sugars

Β.

Aroma components in fresh fruit pulp

Headspace-SPME-GCMS

1. Fine-aroma potential?


comparison with common "Fine or Flavour"-cocoas

- 2. Influence of the season during fruit ripening rainy season, dry season
- 3. Influence of the fruit ripening stage

unripe, ripe, overripe fruits

Method: Aroma components in fresh fruit pulp

Rausch

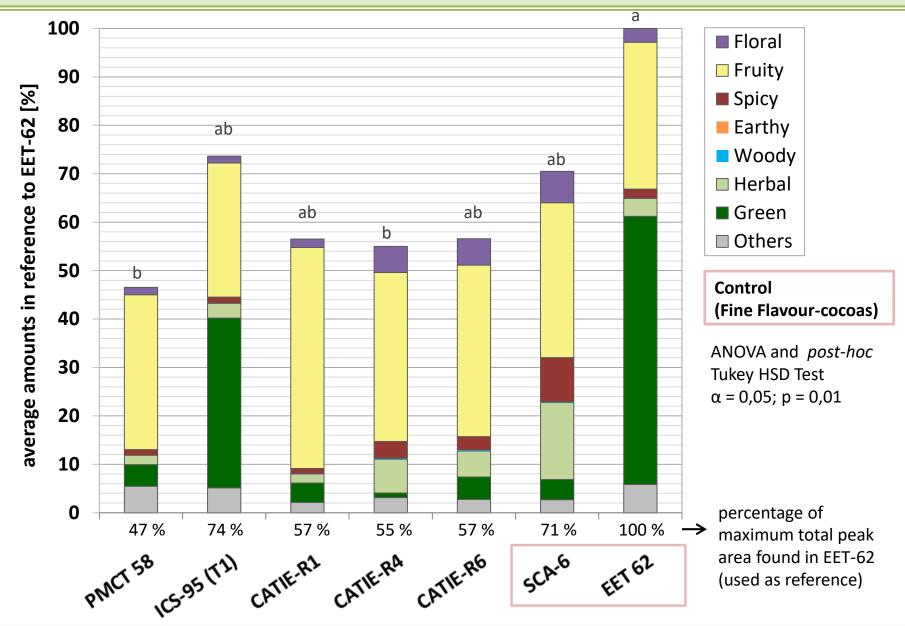
Various volatile aroma components were identified

monoterpenes, sesquiterpenes, alcohols, esters, aldehydes and ketones
 green, herbal, fruity, floral, spicy, earthy, woody, cheesy, fermented

Individual amounts differ strongly --> major and minor components

- > 2-heptanol, acetate (green) und 2-pentanol, acetate (fruity) predominate
 - the individual aroma-character is defined by volatiles of low amounts (minor components, <1 %)* and traces (<0,1 %)*</p>

*share in total aroma

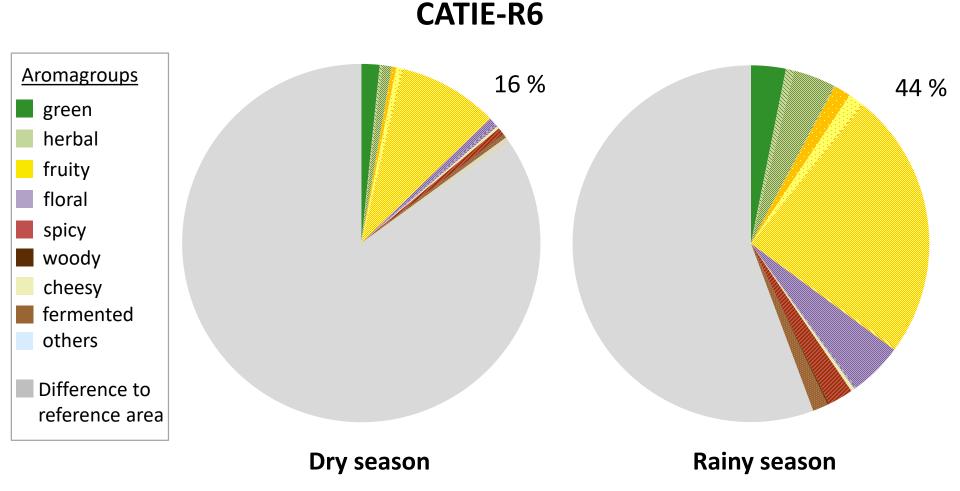

	monoterpenes	sesquiterpenes	alcohols <i>floral</i>	alcohols other	esters	ketones	aldehydes
examples	α-ocimene	α-bergamotene	linalool	2-heptanol	2-heptanol acetate	2-nonanone	nonanal
CATIE-R1	+	+++	++	+	++	+	-
CATIE-R4	+++	+++	+++	++	+	+	++ 1)
CATIE-R6	+++	+++	+++	+	++	+	-
ICS-95 T1	+	-	++	+++	+++	+++	+++
PMCT-58	+	±	+	++	+++	++	+

¹⁾ only unripe fruits

Categorization according to number of components or peak area

+++ = predominant / ++ = medium / + = less / ± = 1 compound detected / - = not detected

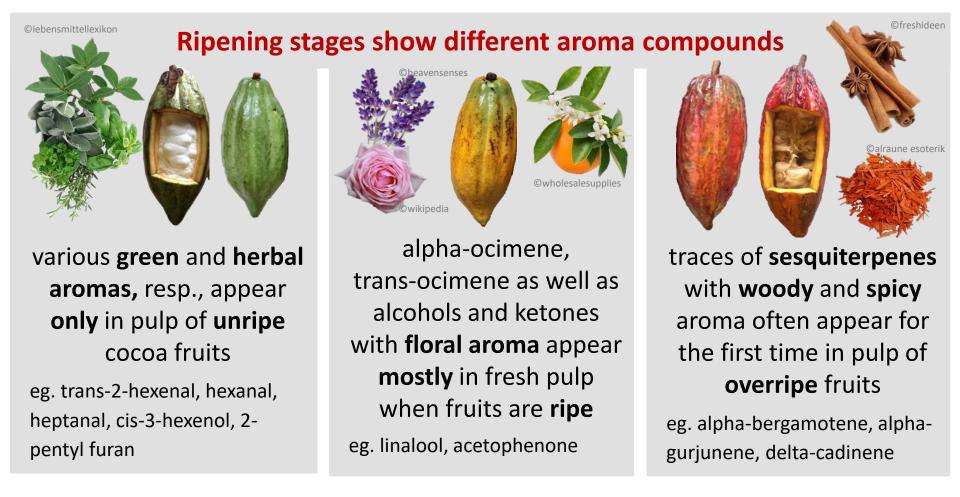
Ripe and overripe cocoa fruits: aroma compositions of fresh fruit pulp



Aroma differences in main crop and mid-crop

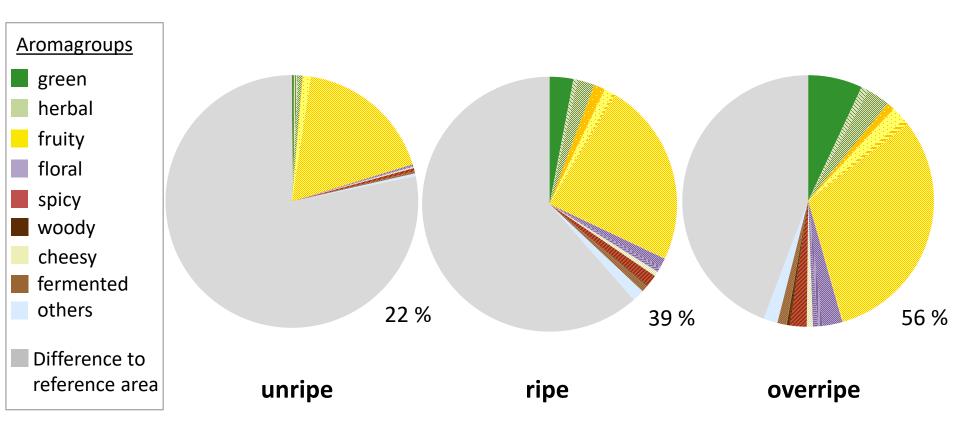
> increased **aroma intensity** in the rainy season

> depending on the genotype, increased **aroma diversity** in the dry season



Reference area: maximum total peak area detected = fine aroma cocoa EET 62 ANOVA and *post-hoc* Tukey HSD Test with α = 0,05 und p ≤ 0,001

Results: Influence of the fruit ripening stage at time of harvest


Increasing aroma intensity from *unripe* \rightarrow *ripe* \rightarrow *overripe*

Aroma compounds in unripe, ripe and overripe cocoa fruit pulp, resp., of the dry season

CATIE-R6

Reference area: maximum total peak area detected = fine aroma cocoa EET 62 ANOVA and *post-hoc* Tukey HSD Test with α = 0,05 and p = 0,007

- Volatile aromas identified in commonly known "Fine or Flavour"- Cocoas (EET-62, SCA 6) were detected in fresh fruit pulps of the cocoa clones
 CATIE-R1, CATIE-R4, CATIE-R6, PMCT-58 and ICS-95 (T1)
 - These findings allow their classification as "Fine or Flavour"- Cocoas

- Fine aroma potential is strongly genotype-dependent and varies with the season and the fruit ripening stage
 - The CATIE-clones show individual aroma profiles and intensities, resp.
 - Different aroma-qualities to be expected in main crop and mid-crop

Many thanks for your attention

Acknowledgement

Working group of the Cocoa Genetic Improvement Program

Jürgen Rausch Robert Rausch Rausch GmbH

Dr. Christina Rohsius

References

- Afoakwa, E.O., Paterson, A., Fowler, M., Ryan, A. (2008): "Flavor Formation and Character in Cocoa and Chocolate: A Critical review". Critical Reviews in Food Science and Nutrition, Vol. 48, p. 840-857. Taylor
- Andersson, M., Koch, G., Lieberei, R. (2006): "Structure and function of the seed coat of *Theobroma cacao* L. and its possible impact on flavour precursor development during fermentation". Journal of Applied Botany and Food Quality, Vol. 80, p. 48-62
- Eskes, B, Ahnert, D., Assemat, S., Seguine, E. (2009): "Evidence for the Effect of the Cocoa Bean Flavour Environment during Fermentation on the Final Flavour Profile of Cocoa Liquor and Chocolate". INGENIC Newsletter, accessed Oct, 30th 2017. Available on: https://agritrop.cirad.fr/568108/1/document_568108.pdf.
- Hegmann, E. (2015): "Qualitätsbedingende Eigenschaften neuer Kakao-Genotypen und deren Verhalten im Nachernteverfahren –eine Analyse neuer Kakao-Selektionen aus Costa Rica".
 Dissertation. Department of Biology at the Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg. URL: http://ediss.sub.uni-hamburg.de/volltexte/2015/7513/pdf/Dissertation.pdf
- Kadow, D., Bohlmann, J., Phillips,W., Lieberei, R. (2013): "Identification of main flavour components in two genotypes of the cocoa tree (*Theobroma cacao L*.)". Journal of Applied Botany and Food Quality, Vol. 86, S. 90-98. DOI:10.5073/JABFQ.2013.086.013
- Phillips-Mora, W., Wilkinson, M.J. (2007): "Frosty Pod of Cacao: A Disease with a Limited Geographic Range but Unlimited Potential for Damage". In: Symposium, Cacao Diesease: Important Threats to Chocolate Production Worldwide. Phytopathology, Vol. 97, No.12, p. 1644-1647. DOI: 10.1094/PHYTO-97-12-1644
- Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quiros, A., Motamayor-Arias, J.C. (2013): "Catalogue of cacao clones selected by CATIE for commercial plantings". 1. Edition. CATIE, Turrialba, Costa Rica, ISBN 978-9977-57-590-2
- Phillips-Mora, W., Arciniegas-Leal, A., Mata-Quirós, A., Motamayor-Arias, J.C. (2013): "Catalogue of cacao clones selected by CATIE for commercial plantings". 1. Edition. CATIE, Turrialba, Costa Rica, ISBN 978-9977-57-590-2.
- Schwan, R.F, Wheals, A.W. (2004): "The microbiology of cocoa fermentation and its role in chocolate quality". Critical Reviews in Food Science and Nutrition, Vol. 44, p. 205-221.