FiBL

Research Institute of Organic Agriculture FiBL info.suisse@fibl.org, www.fibl.org

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Cadmium availability and uptake in four different cocoa production systems in Bolivia

A. Gramlich¹, S. Tandy¹, C. Andres², J. Chincheros³, L. Armengot², M. Schneider², R. Schulin¹

¹ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, CH ²Research Institute of Organic Agriculture (FiBL), Frick, CH ³Universidad Mayor de San Andrés, Laboratorio de Calidad Ambiental, La Paz Bolivia

Lima Peru

ISRIC 16.11.2017

Background and motivation

Investigation of soil, variety and management effects on Cd availability in soil and uptake in cocoa plants in a long-term field trial in Sara Ana (Bolivia), where cocoa performance in monocultures and agroforestry systems under conventional as well as organic management is compared.

Methods

Site description

- Bolivia, Alto Beni, alluvial terraces of the river \succ Alto Beni, transition zone Andean plateau and Amazon
- > 400 m asl, precipitation: 1'550 mm, winter dry
- > 20 years of fallow land before set up of trial

Trial layout

- Long-term trial, set up in 2008-2009
- Fully replicated 4 times
 - Gross plot: 48 m x 48 m (144 cocoa trees), net plot 24 m x 24 m (36 cocoa trees)
 - 12 cocoa cultivars: 4 local selected clones, 4 international clones and 4 hybrids of int.clones

Methods

Production systems

	Monoculture		Agroforestry	
Management	Conventional	Organic	Conventional	Organic
Shade tree canopy	- banana trees in establishment phase	- banana trees in establishment phase	42 trees plot ⁻¹ (227 trees ha ⁻¹): legumes, timber, fruit trees, etc. Banana followed by plantain	42 trees plot ⁻¹ (227 trees ha ⁻¹): legumes, timber, fruit trees, etc. Banana followed by plantain
Fertilization	Mineral fertilizer. Occasional foliar sprays	Compost	Mineral fertilizer. 50% of monoculture dose. Occasional foliar sprays	Compost. 50% of monoculture dose.
Weed control	Herbicides (4-5 year ⁻¹) Manual weeding, brushcutters	Perennial legume cover (<i>Neonotonia wightii</i>) Manual weeding, brushcutters	Herbicides (4-5 year ⁻¹) Manual weeding, brushcutters	Perennial legume cover (<i>Neonotonia wightii</i>) Manual weeding, brushcutters
Pest and disease control	Manual control, occasional insecticides against leave cutting ants	Manual control	Manual control occasional insecticides against leave cutting ants	Manual control

Data collection for this study in year 2014

Sampling strategy

In each plot two trees of two different clones were sampled (fruits, leaves and roots) and soil samples were taken at 70 cm distance from the trunk.

Sampling strategy

www.fibl.org

FiBL

- 10 medium aged leaves per tree
- 2-3 mature fruits per tree
- Composite soil sample (0-10 cm)
- Composite soil sample (10-25 cm)

Trunk diameters

FiBL

 \diamond ICS I clones were bigger than TSH 565.

 \diamond Trees in monocultures were bigger than the ones in AF. $_{\rm www.fibl.org}$

Parameters analysed in soils and plants

Soil

Soil pH (CaCl₂)

Texture

Organic Matter (Walkley Black)

Available P (Olsen P)

K disponible

Cd, Fe, Zn disponible (AAAC-EDTA)

Cd, Zn total (Aqua Regia)

DGT disponible Cd, Zn

Total Cd, Fe, Zn
Roots
Mycorrhizal abundance

Leaves, pod husks

and beans

Fertilizers / Pesticides / River water

Total Cd

Cd levels in plants and soil

	Cd (mg kg ⁻¹)	Cd (mg kg ⁻¹)		
	total	available	- N	Maximum tolerated Cd levels in
Leaves	0.9 ± 0.05			the EU in
				wheat/rice: 0.2 mg kg ⁻¹
Pod husks	0.5 ± 0.05			Chocolate (exp): 0.3 – 0.8 mg kg ⁻¹
Beans	0.2 ± 0.02		K	
Top Soil	12 + 0.05	03+001		Worldwide average total soil Cd
	1.2 ± 0.05	0.5 ± 0.01		concentration: 0.2 mg kg ⁻¹
Sub Soil	1.0 ± 0.06	0.2 ± 0.01		
			-	

 \diamond Cd levels in cocoa beans are in an acceptable range.

- Cd levels in soils are rather high. Above total Cd levels of 1.1 mg kg⁻¹ soils are generally considered as contaminated soils.
- \diamond Higher concentrations were found in the top soil than in the sub soil.

Factors influencing Cd in leaves for Cd in beans we couldn't find

Multiple linear effects model with forward variable selection:

```
Leaf Cd ~ System + Clon + Cd<sub>DGT</sub> + Organic matter
```

R²: 0.59

P-Values: System : 0.01 Clon : 0.01 Cd_{DGT} : < 0.001 Organic matter: 0.005

System: Monocultures higher concentrations than agroforestry systems Clon: ICS I has higher Cd contents than TSH 565 Cd_{DGT}: Positive relationship Organic matter: Negative relationship

Conclusions and outlook Cd

- ♦ The total Cd levels in soils were high, close to the threshold of soils considered as contaminated.
- \diamond The bean Cd concentrations were intermediate.
- Only a very small part of variance in bean and husk Cd was explained by studied factors.
- Factors explaining differences in leaf content: system, clone,
 Cd_{DGT} and organic mater

Outlook:

- Analyse more clones (root and graft)
- Cd allocation in older cacao trees
- Competition for Cd uptake by AF-trees
- In soils with lower pH: test liming and soil organic matter increase

Study published in Science of the Total Environment 2016

Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management

A. Gramlich¹, S. Tandy¹, C. Andres², J. Chincheros³, L. Armengot², M. Schneider², R. Schulin¹

¹ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, CH ²Research Institute of Organic Agriculture (FiBL), Frick, CH ³Universidad Mayor de San Andrés, Laboratorio de Calidad Ambiental, La Paz Bolivia

Acknowledgments

Funding partners

Swiss Agency for Development and Cooperation SDC

ECOTOP

World Food System Center

coop

This project is supported by the Coop Sustainability Fund.

