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Abstract 

Increasing yield is a prominent feature of crop breeding programmes including the economically 

important cacao (Theobroma cacao L.). As a tropical tree crop, the time and acreage needed for selection 

of improved varieties are limiting factors. Selection at an early seedling stage in a marker-assisted 

selection programme is desirable. Candidate molecular microsatellite markers were identified under an 

association mapping approach for five fruit (fruit mass, husk mass, fruit length, fruit girth and fruit 

volume) and three seed (length, width and size of fresh peeled seeds) traits. Nine microsatellite markers 

(mTcCIR 19, 30, 40, 43, 57, 60, 126, 184 and 275) were consistently obtained under general and mixed 

linear models and explained between 4.68 – 12.87% of the observed variation. Markers mTcCIR60, 

mTcCIR126 and mTcCIR184 were most significantly associated with the reproductive traits. The 

adoption of these markers is recommended to the international cacao community. 
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Introduction 

Cacao (Theobroma cacao L.), a diploid (2n = 20) tree in the family Malvaceae sensu lato (Alverson et al. 

1999; Bayer et al. 1999), is an economically important plantation crop for many tropical countries 

worldwide (Eyre 2007). The centre of origin and diversity of this crop is in Amazonian South America 

(Cuatrecasas 1964; Motamayor et al. 2008). Genetic resources of cacao are established as field gene 

banks in national or universal collections (Butler and Umaharan 2004). These collections are good 

repositories to obtain breeding material for crop improvement. Breeding programmes have focussed on 

the economy of production by selecting for yield and disease resistance (Kennedy et al. 1987; Lockwood 

and Yin 1993; Lopes et al. 2011).  Cacao breeding, though, is a long-term process due to the long 

reproductive cycle and the duration required for field trials. It took over 60 years in Trinidad to obtain the 

popular TSH cultivars (Gonsalves 1996; Maharaj et al. 2011) and 17 years in Brazil to obtain 41 farmer 

varieties (Lopes et al. 2011).  

 Acceleration of breeding goals has improved with the advent of molecular methods. With simulation 

studies, Crouzillat et al. (2000) demonstrated that, in cacao, the use of molecular markers alone or in 

combination with phenotypic selection was more effective than phenotypic evaluation only. This 

molecular breeding approach termed marker-assisted selection, marker-aided selection or marker-assisted 

breeding, uses a marker or set of markers associated with quantitative trait loci (QTL) to tag a trait of 

interest, thereby identifying improved individuals (Michelmore et al. 1991; Collard et al. 2005). Reviews 

on QTL analyses, and the application of markers in marker-assisted selection have been published 

(Paterson et al. 1991; Tanksley 1993; Hospital 2003; Peleman et al. 2005). Classical QTL analysis makes 

little or no use of ancestry information unlike admixture and association mapping. Admixture mapping 

(Rife 1954), is premised on population differentiation between ancestral populations, uses the local 

phenotype-ancestry correlation and is applied for recent (<20 generations) admixture (Shriner 2013). The 

approach is best used when different proportions of the allele affecting the trait are present in a recently 

admixed population derived from two known progenitors (Darvasi and Shifman 2005). Using admixture 

mapping, Marcano et al. (2007) identified 15 genomic regions that influenced seed and fruit mass 

variation using 101 microsatellites (SSRs) on 150 germplasm accessions and 92 SSRs on 291 plantation 

individuals. Similarly, Marcano et al. (2009), using 257 individuals and 92 SSRs identified several SSR 

markers linked to productivity, yield, bean dimensions, pigmentation, pubescence and fruit rugosity. 

 In contrast, direct association mapping, tests the genotype-phenotype correlation, and is premised on 

similar allele frequencies across multiple ancestries allowing for fine-scale localization (Buckler and 

Thornsberry 2002; Flint-Garcia et al. 2003; Shriner 2013). In association mapping (association analysis or 

linkage disequilibrium mapping), the identified markers have the advantage of being broad-based in 

application instead of being restricted to a population or populations (Yu and Buckler 2006). Linkage 

disequilibrium (LD) is the higher-than-normal or lower-than-normal occurrence of natural non-random 
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combinations of alleles at two or more loci. Association mapping is reliant on LD to examine the 

correlation between phenotypic variation and genetic polymorphisms (Flint-Garcia et al. 2003; Yu and 

Buckler 2006). Spurious or false associations may arise due to population structure and were minimised 

by accounting for population stratification and relatedness (Aranzana et al. 2005; Price et al. 2006; Yu et 

al. 2006). Association mapping studies on a wide range of plants have been reviewed (Flint-Garcia et al. 

2003; Zhu et al. 2008; Soto-Cerda and Cloutier 2012; Gupta et al. 2014). Association mapping studies in 

cacao, although limited, have found markers for fruit colour (Motamayor et al. 2013; Stack et al. 2015), 

resistance to frosty pod disease (Romero Navarro et al. 2017), number of seeds and resistance to blackpod 

and witches’ broom disease (Motilal et al. 2016). This study was therefore undertaken to search for SSR 

markers that may be linked fruit and seed traits of economic value in T. cacao L. 

 

 

Materials and Methods 

Phenotyping 

Fruits were harvested, primarily from the main trunk, but also from primary and secondary branches from 

selected trees of 398 accessions in the International Cocoa Genebank Trinidad (ICGT). A minimum of 

three fruits of a unique accession was sampled. Fruits were sometimes harvested from multiple trees that 

were deemed equivalent from multilocus molecular profiles. Eight quantitative traits (Table 1) were 

evaluated in the laboratory. Fruit mass (FM) was determined on the same day of collection using an 

ACBplus-1500 top-loading balance with sensitivity of ± 0.05 g (Adam Equipment Co. Ltd., USA). The 

husk mass (HM) was obtained by subtracting the mass of the placental body from the fruit mass. Fruit 

length (FL) and fruit girth (FG) were measured with the aid of a tailor measuring tape. The tape was run 

along the maximum curvature of the fruit to obtain the length and at the equator or maximum girth of the 

fruit to obtain the fruit girth. The fruit volume (FV) was calculated using the FL and FG and treating the 

fruits as ellipsoidal forms. From each fruit, five seeds were selected from one of the five loculi. Seeds at 

the very apical and basal ends were avoided and when sufficient seeds were available, alternate seeds 

along the loculus were selected; otherwise contiguous seeds were sampled. The mucilaginous pulp (aril) 

of each seed was hand-peeled and the fresh bean length (FBL) and fresh bean width (FBW) of each 

peeled seed (unit of embryo with pair of cotyledons) was determined using a digital calliper (Mitutoyo 

Corporation, Japan). The sizes of the fresh peeled seeds (FBS) were determined from the corresponding 

lengths and widths. 

 

Table 1 Fruit and seed quantitative traits of Theobroma cacao under study 

Fruit Trait Acronym Unit Formula1 

Fresh bean length FBL mm none 

Fresh bean size FBS mm2 FBL × FBW 

Fresh bean width FBW mm none 

Fruit girth FG cm none 

Fruit length FL cm none 

Fruit mass FM g none 

Fruit volume FV cm3 (7×FL×FG2)/66 

Husk mass HM g FM – mass of placental body 
1Derived traits are those whose values are determined from formulae 

 

Genotyping and population structure 

Multilocus SSR profiles were obtained from 95 loci for each of the 398 samples on a Beckman Coulter 

8000 or 8800 capillary sequencer. Population structure was determined independently from a set of 27 or 

52 SSRs using a burn-in of 500,000 and 1 ×106 MCMC runs were performed for 20 iterations at K = 2-17 

using Structure v2.3.4 (Pritchard et al. 2000).  

 

Association mapping analysis 

Trait ancestry and marker data were taken into TASSEL v4.2.1 (Bradbury et al. 2007). Association 

analysis can be configured as in Figure 1. In this YEAST model, the system information (Sαt) can be 

taken from the ancestry information (SQt), the multivariate analysis based on molecular data (SMt) or the 

kinship relationship based on molecular data (SKt). Incorporation of a kinship matrix turns a general linear 

model (GLM) into a mixed linear model (MLM). The genotype file was filtered to remove alleles with 

frequency < 0.01 and retained for further manipulation. The filtered genotype file was used to create the 

kinship matrix in Tassel v4.2.1 (Bradbury et al. 2007). The filtered genotype file was collapsed and 

markers with >10% missing data were identified for exclusion from the un-collapsed filtered genotype 

file. After removal of these markers, the pruned file was collapsed and missing values were imputed from 

unweighted averages of three nearest neighbours, using a Manhattan distance. The principal components 

matrix was created from the repopulated collapsed file using a covariance method and eigenvectors were 
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retained for three axes. The ancestry file was used as a covariate and one of the populations was removed 

from the analyses. Markers used for determination of ancestry were excluded from the allele file for 

association mapping analysis. Datasets were joined using the intersect function to minimise the incidence 

of missing phenotypic values across genotypes or allelic information for phenotypes.  General linear 

models using a least squares solution (Searle 1987) on trait data were run independently using the default 

settings of 1000 permutations and the permutation test of Anderson and Ter Braak (2003). Mixed linear 

models were run independently using optimum level compression (Yu et al. 2006; Zhang et al. 2010) and 

P3D estimation of the variance component (Zhang et al. 2010). The strategies employed are presented in 

Table 2. Sample sizes within the SSR dataset/model combinations ranged from 195-277 for HM; 212-300 

for FG, FL FM, and FV; and 140-200 for dimensions of fresh beans. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Synopsis of association mapping strategy in the present study 

SSR Dataset1 # Ancestry 

markers 

Ancestry 

filter2 

# Markers for PCA & 

kinship3 

# Tassel 

Markers 

Models4  

B_all none none 43 (3 PCA axes) 95 GLM2, MLM3 

B1 52 Q10 to Q9 21 (3 PCA axes) 43 GLM2, 3; MLM3, 4 

B2  27 Q10 to Q9 32 (3 PCA axes) 68 GLM2, 3; MLM3, 4 
1SSR – microsatellite;  
2Q – general population code 
3PCA – principal coordinate analysis 
4GLM – general linear model; MLM – mixed linear model;  

GLM2: Y = E + A + SMt; GLM3: Y = E + A + SQt + SMt; MLM2: Y = E + A + SQt + SKt;  

MLM3: Y = E + A + SMt + SKt; MLM4: Y = E + A + SQt + SMt + SKt. 

where Y = response, E = error, A = allelic information, SQt = population ancestry matrix, SMt = principal 

components, SKt = kinship relatedness. 

 

Selecting associated markers 

Probability values from Tassel output were compared to Bonferroni (Bonferroni 1936; Dunn 1959, 1961) 

corrected p-values at the 5% level of significance. Final selection of associated markers employed the 

following criteria: (a) present in more than one dataset; (b) present in at least two models; (c) most 

constraining model or dataset chosen from (a) and (b) preceding; (d) if LD as r2 is ≥ 0.1 or if they were 

within the LD decay distance (9.3 cM for chromosomes 1-9 and 2.5 cM for chromosome 10; Motilal et al. 

2016), then only one marker was chosen; and (e) multiple markers from (d) were reduced by retaining the 

smallest set of markers to represent the total set, selecting markers with lowest p-values, selecting 

markers common to more than one trait and selecting markers with at least five observations in the effect 

output of the Tassel run. 

 

 

Figure 1 Schematic of association mapping 

Modified from Zhu et al. (2008). The trait (Y) is modelled by allocating information to the 

molecular background (Sαt) as ancestry (SQt), principal components (SMt) or kinship relatedness 

(SKt). E represents the error term and A, the allelic profiles. General Linear Models (GLM) do not 

contain kinship matrices unlike Mixed Linear Models (MLM). Differing combinations of Sαt 

terms may be present in the modelled equation. 
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Results 

The majority of the associated markers were obtained under GLM rather than MLM models (Table 3). 

Over the dataset/model combinations, between 1-11 markers could be tagged to the studied traits, with 

FG having the most potentially associated markers. Consistently reported markers across models within a 

dataset and across datasets were present. For example, under both GLM2 and MLM3 models in the B_all 

dataset, common markers for FBL (mTcCIR60 and mTcCIR126), FBS (mTcCIR60), FG (mTcCIR184), 

FM (SHRSTc44) and FV (SHRSTc44) were found. Several significant markers had to be discarded 

because the effect size from the Tassel output was based on less than five observations. Further reduction 

was possible when LD was considered. For instance, six SSR loci (mTcCIR 40, 77, 126, 184, 275; 

SHRSTc44) could be retained for FV based on dataset/model considerations but since mTcCIR77, 

mTcCIR126 and SHRSTc44 were in LD, only one locus (mTcCIR126) was chosen to represent this set.  

 The final set of retained SSR loci that were tagged to traits were found on chromosomes 1, 2, 3, 4 and 

9, explained between 4.68-12.87% of trait variation and had an overall mean of 8.08 ± 0.42% (Table 

4).Traits were tagged with one (FBW, FBS, FL), three (FM), four (FBL, FV, HM) or six (FG) loci. Five 

loci were most informative, tagging three (mTcCIR40, mTcCIR275), four (mTcCIR60, mTcCIR184) and 

six (mTcCIR126) traits. Applying a significance threshold of 5 × 10-5 identified three SSRs (mTcCIR60, 

126, 184) that were strongly associated within the set of markers identified in the association analysis 

(Table 4). The locus mTcCIR60 was associated with all seed traits and mTcCIR126 was associated with 

all fruit traits. The locus mTcCIR184 was associated with all fruit traits except for fruit length. 

 

Discussion 

Eight SSRs were found under an association mapping approach to tag eight traits based on fruit and seed 

phenotypes in T. cacao. The markers identified represent possible sets as correlated markers (LD as 

multiallelic r2 > 0.1, markers within decay distance) and imprecise markers (less than 5 observations in 

effect size) were discarded. It was therefore possible those potentially useful markers were not selected 

and that the identified sets represented the best minimum number of associated markers in the current 

study. The accumulation of more phenotypic data across all traits is therefore recommended so as to 

reduce the incidence of missing data and to increase the number of phenotyped individuals. This should 

improve the chances of getting more than five observations per genotypic state in the effects file. It would 

also substantially improve the power of association mapping studies as increasing the number of 

phenotyped individuals is more effective than increasing the number of SNPs (Long and Langley 1999; 

Myles et al. 2009). The number of markers was variably increased depending on the trait involved and the 

model employed, with GLM having more associated markers. The use of MLM models together with 

PCA have been reported in the literature (Price et al. 2006; Yu et al. 2006; Zhao et al. 2007; Raman et al. 

2010). MLM models have been shown to be more effective in controlling for spurious association than 

GLM models (Yu et al. 2006; Zhao et al. 2007; Raman et al. 2010; Soto-Cerda and Cloutier 2012) with 

false positives being primarily due to population structure and relatedness (Thornsberry et al. 2001; 

Aranzana et al. 2005; Price et al. 2006; Yu et al. 2006). Stich et al. (2005) suggested that MLM models 

and using the ancestry file for genetic structure did not correct for LD caused by selection and genetic 

drift. The markers presented in Table 4 were considered to be likely trait tags because they were common 

across datasets; they were common across models; population structure was variably accounted for by 

ancestry, kinship and/or principal coordinate analyses; and some markers were at a highly significant p-

threshold, tenfold lower than that indicated by Bonferroni adjustment.  

 Marcano et al. (2007) found that mTcCIR184 and mTcCIR275 were linked to QTL for fruit mass. Like 

Marcano et al. (2009) associations were found for mTcCIR30 with FBL and mTcCIR157 with FBW 

supporting the reliability of these markers. However, the mTcCIR60 marker identified in the present 

study for FBL, FBMF and FBW was 3 cM distant from mTcCIR253, a locus absent from the present 

study but found by Marcano et al. (2009) for FBMF, bean length and bean width. Since mTcCIR60 and 

mTcCIR253 were within the LD decay distance, the reliability of mTcCIR60 is supported. The marker 

mTcCIR60 was also within 4 cM of a flanking marker for a QTL for bean length (Clement et al. 2003a, 

2003b). The SSR locus mTcCIR60 which was associated with quantitative fruit and seed traits in this 

study was also found to be associated with productivity (Schnell et al. 2005). The markers found 

associated to the traits may be used as candidate markers for trait expression. These can be employed in a 

MAS programme to help identify promising progeny at the seedling stage and reduce the number of 

plants required for phenotypic evaluation. The efficiency of marker-assisted vs. phenotype-assisted 

selection is higher for traits of low heritability (Collard et al. 2005). Narrow and broad sense heritabilities 

for a variety of fruit and seed traits (fruit length, fruit diameter, fruit mass, fruit wall width, number of 

seeds, wet mass of seeds, husk mass, pod index and seed index) ranged from 0.36 – 0.79 and 0.54 – 0.93, 

respectively, with fruit wall thickness having the lowest heritabilities (Mora et al. 1987).   
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Table 3 Microsatellite markers associated with cacao phenotypes  

Trait Dataset Model1 Microsatellite marker2 

Fresh bean 

length (mm) 

B_all GLM2 m30, m40, m60, m126, m140; S51 

B_all MLM3 m60, m126 

B1 GLM2 m30 

B2 GLM2 m40, m60; S51 

B2 MLM3 m60; S51 

Fresh bean size 

(mm2) 

B_all GLM2 m60; S51 

B_all MLM3 m60 

B1 GLM2 m43 

B2 GLM2 m60; S51 

B2 GLM3 m157 

B2 MLM3 m60 

Fresh bean width 

(mm) 

B_all GLM2 m60 

B2 GLM2; MLM3 m60 

B2 GLM3 m157 

Fruit girth (cm) B_all GLM2 m19, m40, m43, m60, m77, m90, m126, m184, 

m225, m275; S44 

B_all MLM3 m184 

B1 GLM2 m43, m77, m184; S44 

B2 GLM2 m19, m40, m60, m90, m126, m184, m275 

B2 MLM3 m37 

Fruit length (cm) B_all GLM2 m126; S44 

B1 GLM2 S44 

B1 MLM4 m225 

B2 GLM2 m126, m275 

Fruit mass (g) B_all GLM2 m43, m77, m90, m126, m184, m275; S44 

B_all MLM3 S44 

B1 GLM2  m77, m184; S44 

B1 MLM3  m184 

B2 GLM2  m90, m126, m184, m275 

Fruit volume 

(cm3) 

B_all GLM2  m40, m43, m77, m126, m184, m225, m275; S44 

B_all MLM3 m126; S44 

B1 GLM2 m77, m184; S44 

B1 MLM3 m184 

B2 GLM2 m19, m40, m126, m184, m275 

B2 GLM3 m275 

Husk mass (g) B_all GLM2 m43, m57, m77, m126, m184, m275; S44 

B1 GLM2 m57, m77, m184; S44 

B1 MLM3 m184 

B2 GLM2 m90, m126, m184, m275 

B2 MLM3 m184 
1GLM – general linear model; MLM – mixed linear model; Y = trait value, E = error, A = allele 

information, SQt = population ancestry matrix, SKt = kinship matrix, SMt = principal component matrix 

GLM2: Y = E + A + SMt; MLM3: Y = E + A + SMt + SKt; MLM4: Y = E + A + SQt + SMt + SKt  
2m = mTcCIR; S = SHRSTc 

Details of dataset can be found in Table 2 
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Table 4 Selected microsatellite markers significantly associated with cacao (Theobroma cacao L.) 

phenotypic traits 

Trait Marker1 High 

effect 

Chrom2 Position 

(cM) 

Dataset/ 

Model3 

%Var(P)4 

Fresh bean length (mm) CIR30 176/184 9 22.1 B_all/GLM2 8.60 

CIR40 288/288 3 17.1 B_all/GLM2 10.00 

CIR60 195/215 2 54.6 B_all/MLM3 12.87 

CIR126 214/214 9 9.70 B_all/MLM3 9.63 

Fresh bean width (mm) CIR60 195/215 2 54.6 B2/MLM3 9.34 

Fresh bean size (mm2) CIR60 195/215 2 54.6 B_all/MLM3 12.39 

Fruit girth (cm) CIR19 376/376 2 14.6 B_all/GLM2 6.61 

CIR40 288/288 3 17.1 B_all/GLM2 7.27 

CIR43 208/208 4 33.4 B_all/GLM2 6.23 

CIR60 195/195 2 54.6 B_all/GLM2 6.72 

CIR126 208/208 9 9.7 B_all/GLM2 10.90 

CIR184 117/117 1 2.0 B_all/MLM3 6.26 

Fruit length (cm) CIR126 208/208 9 9.7 B_all/GLM2 7.11 

Fruit mass (g) CIR126 208/208 9 9.7 B_all/GLM2 10.50 

CIR184 117/117 1 2.0 B_all/GLM2 8.13 

CIR275 146/146 1 81.4 B_all/GLM2 7.10 

Fruit volume (cm3) CIR40 288/288 3 17.1 B_all/GLM2 6.67 

CIR126 208/208 9 9.7 B_all/MLM3 6.45 

CIR184 117/117 1 2.0 B1/MLM3 6.85 

CIR275 146/146 1 81.4 B2/GLM3 4.68 

Husk mass (g) CIR57 251/255 4 53.6 B_all/GLM2 7.65 

CIR126 208/208 9 9.7 B_all/GLM2 7.83 

CIR184 117/117 1 2.0 B1/MLM3 7.64 

CIR275 146/146 1 81.4 B_all/GLM2 6.66 
1CIR = mTcCIR; S = SHRSTc; entries with p ≤ 5 × 10-5 bolded; 
2Chromosome and map position from SSR/SNP consensus map of CocoaGenDb 

(http://cocoagendb.cirad.fr/) except for S44 obtained from Kuhn et al. (2006) 
3Datasets as in Table 9.1; Models are general linear models (GLM) or mixed linear models (MLM); 

GLM2: Y = E + A + SMt; GLM3: Y = E + A + SQt + SMt;  

MLM3: Y = E + A + SMt + SKt; MLM4: Y = E + A + SQt + SMt + SKt. 
4pecentage of phenotypic variation explained 

 

 

 

These results suggested that MAS may not have significant advantage over phenotypic selection for traits 

with high heritability in cacao. However, phenotypic evaluations is often time-consuming, difficult or 

costly (Dreher et al. 2003; Young 1999; Yu et al. 2000). Current trends indicate cost reduction for SNP 

genotyping which should make MAS more cost-effective and therefore more favourable than phenotypic 

selection. The limited availability of land resources in terms of quantity and issues of tenure may also 

weigh against phenotypic selection due to the long vegetative phase and number of years needed to obtain 

productivity values. It would be more cost-effective to screen progenies at the greenhouse stage under an 

MAS scenario and select the most promising ones for phenotypic validation. Moreover, the approach of 

genomic selection may be more promising as the cost of next generation sequencing continues to 

decrease.  In contrast to MAS which utilizes markers to track small numbers of loci with large effects, 

genomic selection uses large set of marker information distributed across the whole genome to predict 

breeding values of individuals. Once the prediction model is established based on training populations, 

the selection can be based on markers only without known phenotype (Isik, 2014). 
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